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In this article we focus on beta estimation in the thinly-traded environment of the Johannesburg Stock Exchange (JSE). 
We build on existing literature by evaluating a beta estimation procedure known as the trade-to-trade which has not 
until now been considered in the context of the JSE. We contrast our results with two known estimation procedures, 
i.e. the Cohen et al. and the traditional ordinary least squares (OLS). The trade-to-trade methodology, the estimator 
proposed by Cohen et al. and OLS are objectively assessed for shares typical of the JSE on the basis of unbiasedness 
and efficiency in the controlled environment of a simulation study. The trade-to-trade technique is found to be superior 
on both counts and is recommended as the appropriate technique for beta estimation on the JSE. 

In hierdie artikel fokus ons op die skatting van beta-kot!ffisifnte van aandele op die Johannesburgse Effektebeurs 
(JEB) wat 'dun' verhandel is. Ons ondersoek die sogenaamde transaksie-tot-transaksie-beta-skattingsprosedurewat tot 
dusver nie op die JEB getoets is nie. Hierdie prosedure word met twee ander bekende skattingsprosedures vergelyk, 
naamlik die prosedures van Cohen et al. en gewone kleinste kwadrate. Die drie metodes word deur middel van 'n 
simulasiestudie vergelyk in terme van onsydigheid en doeltreffendheid. Dit blyk dat die transaksie-tot-transaksie­
metode beter vertoon op albei kriteria en die metode word dus aanbeveel vir beta-skatting op die JEB. 

•Author to whom correspondence should be addressed. 

Introduction 
It is well known that infrequent/thin trading biases the esti­
mates of financial risk statistics (particularly the beta of a 
share) when traditional methods of estimation are used. 
Several researchers have developed correction techniques to 
compensate for the biases in the estimates of beta caused by 
thin trading. The more notable contributions in the area of 
beta estimation are Dimson (1979), Scholes & Williams 
(1977) and Cohen et al. (1983). The two correction proce­
dures which have been widely used in the literature are the 
'trade-to-trade' (T-'O technique (advocated by Dimson & 
Marsh, 1983) and the Cohen-type estimators, of which the 
Dimson aggregated coefficients1 and the Scholes-Williams 
methods can be regarded as special cases. 

On the Johannesburg Stock Exchange (JSE) Bradfield 
(1990) provides evidence of the extent of the bias in beta 
estimates caused by thin trading. In a further paper by Brad­
field & Barr (1989) the appropriateness of the beta esti­
mation procedure developed by Cohen et al. (1983), which 
is aimed at correcting the bias caused by thin trading, was 
assessed for JSE stocks. Bradfield & Barr (1989) demon­
strated that the correction procedure yields, on average, less 
biased estimates of beta in comparison with the traditional 
ordinary least squares (OLS) procedure. 

In this article we extend the results of Bradfield & Barr 
(1989) by assessing the efficiency of a further beta correc­
tion procedure known as the 'trade-to-trade' approach which 
was advocated by Dimson & Marsh (1983). We demon­
strate, using the controlled environment of a simulation 
study, that the trade-to-trade beta estimator is superior to the 
Cohen et al. (1983) procedure in correcting for the effects of 
thin trading for typical JSE stocks. 

The two criteria for an estimator of beta which are im­
portant discriminators are firstly unbiasedness and, second­
ly, efficiency. While both the T-T and Cohen-type esti­
mators have been shown by their developers to be unbiased 

and consistent, i.e. the distribution of the estimates con­
verges onto the true beta as the sample size increases, their 
efficiencies in terms of estimation error have not yet been 
fully considered (to our knowledge). The aim of this article 
is to quantify the biases which do exist in the OLS estimates 
of betas for shares typical of the JSE and to compare the 
efficiencies of the two competing correction procedures, i.e. 
the T-T and the Cohen estimators. 

The article is organized as follows: In the second section 
we outline details of the simulation study used to compare 
the beta estimators. In the third section the results of the 
simulation study are presented and discussed. The fouth 
section contains some evidence concerning the sensitivity of 
the simulation analysis to the choice of parameter values 
used in generating the data. We offer concluding remarks in 
the last section. 

Outline of methodology 
The major problem in comparing estimators of the beta co­
efficient is that the parameter that is being estimated, i.e. the 
'true' beta, is unknown. One does not, therefore, have a 
yardstick with which to compare estimates of beta, when 
using empirical data. 

Further, a simple comparison of empirical estimates of 
betas provided by the various estimation methods will not 
give a clear indication of whether or not the particular 
method is giving unbiased estimates and, more importantly, 
which method is the more efficient. 

A simulation technique is therefore necessary to address 
the above-mentioned problem. A simulation study allows 
data with known betas to be constructed so that the various 
estimators can be assessed objectively. In this article a 
simulation methodology similar to that employed by several 
researchers (e.g. Dimson, 1979) in the area of the evaluation 
of beta estimators is used. Briefly the approach involves 
simulating returns for a large number of shares at various 
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levels of thin trading assuming known beta coefficients. 
Thereafter the three methods of beta estimation (T-T, Cohen 
and OLS) are contrasted by com)")aring the estimated para­
meterS with the known parameters based on which the data 
was simulated. 

Details of the simulation methodology are outlined below. 

Description of simulation 
The simulation of stock market returns involved two stages: 
firstly, returns for the simulated 'shares' were generated 
using the market model and secondly, thin trading was inll'O­
duced into the returns so that we could measure the relative 
efficiencies of the estimators of beta. 

In the first stage we chose the beta for all simulated share 
returns to be a unity. On this basis we simulated 60 calendar 
months of daily returns for a market index using the normal2 
distribution. The parameters for the simulation were derived 
from the monthly returns on the ]SE-Actuaries Overall 
Index from its inception in September 1978 to December 
1990. The relevant parameters are shown in Table I. To as­
sess the ability of the estimators to deal with various levels 
of non-systematic variation we ran the simulations at a 
range of levels of residual standard deviation as shown in 
Table I. 

From the simulated market returns we generated daily re­
turns for a large number of shares under the assumption of 
the market model with a beta of unity and a zero alpha, i.e.: 

r, = r';'+ e, 

where: 
r, = the return on the share for day t, 
,": = the market return for day t, 
e, = a random normal deviate with standard deviation Ge, 

A beta of unity and alpha of zero meant that a regression 
of the simulated share returns on the market returns would 
result in a beta estimate that could easily be interpreted as a 
proportion of the true beta. 

In the second stage of the simulation procedure we inll'O­
duced the effects of thin trading into the simulated share 
returns. This was done by allocating a measure of thin 
trading to each of the simulated shares. The measures of thin 
trading were defined to be the proportion of days on which 
no 'trades' occurred for each share. The allocation of the 
measures of thin trading to the simulated shares was based 

Table 1 Parameter combinations used in 
simulations 

Simulation: 2 3 4 

E[r:J • .000709 .000709 .000709 .000709 

Std[r';J • .015272 .015272 .015272 . 015272 

a! .02 .01 .005 . 0005 

a The mean return on the market. 

b The standard deviations of the market returns through 

time. 

c The standard deviations of the residuals in the market 

modd. 
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on the distribution of thin trading measures among the 
shares actually listed on the JSE on 30 November 1990 
which is shown in Table 2. Briefly, equal numbers of 
simulated shares were assigned to the ten deciles and for 
each 'share' a particular level of thin trading was allocated 
randomly from the range of levels within the assigned de­
cile. Details of the procedure used to introduce the effects of 
thin trading are outlined in the Appendix. 

The simulated daily returns were then aggregated to form 
a series of simulated monthly returns. The set of monthly 
returns were then regressed against the monthly market re­
turns to obtain estimates of alpha and beta. 

Results of simulations 
In order to consider the impact of various levels of unique 
risk' on the estimators of beta the simulation was conducted 
under the different parameter scenarios listed in Table I. By 
repeating the simulation study at various levels of a, (the 
standard deviation of the security's residuals), we were able 
to compare how the estimators performed across various 
classes of unique risk, that is from the high unique risk (high 
o,) shares to the lower unique risk (low o,) shares. 

In the first part of this section we present the results of 
the simulation at the level of unique risk o, = 0.02. This 
level of unique risk results in estimates of beta which have 
efficiencies of the same order of magnitude as the empirical 
estimates obtained for typical shares on the JSE. 

While the efficiency of an estimator depends on the level 
of unique risk, the average estimated beta resulting from that 
estimator does not 4 Hence, in the second part of this 
section, we combine the estimates of beta from all four 
simulations, i.e. the average betas across all four levels of 
unique risk as shown in Table I. This enables us to calculate 
a more accurate average estimated beta and thus to obtain a 
more accurate estimate of the difference between the ave­
rage estimate and the known beta of unity, i.e. the bias of 
the estimator. 

Thereafter, in the fourth section, we report on the differ­
ences between the estimators by interpreting their efficiency 
at the different levels of thin trading. 

Table 2 Distribution of q (the percentage of days on 
which a share does not trade) on the JSE 

The figures given represent the avenge, minimum and maximum 

values of q for each decile of the shares (ranked by q). 

Average value of Minimum value of 

Decile q In declle q in decile 

1. 1.96 0.00 

2. 11.25 6.28 

3 . 24.29 18.31 

4 . 36.90 30.60 

5. 47.21 41.90 

6. 57.35 51.64 

7. 67.13 62.84 

8. 75.51 70.77 

9. I0.54 80.06 

10. 94.22 88.25 

Maximum value of 

q in decile 

5.74 

18.03 

30.60 

41.62 

51.64 

62.84 

70.77 

80.06 

87.98 

99.81 
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The average of the beta estimates as well as the cross­
sectional standard deviations (i.e. the standard deviation of 
the estimated betas) were computed for each decile of thin 
trading and for each level of unique risk. Since all the data 
were simulated using a beta of unity, the variance of the 
estimated betas within each decile provides an estimate of 
the efficiency of the estimator. 

Table 3 Average betas (cross-sectional 
standard deviations) of simulations with 
residual standard deviation of 0.02 

Decile OLS T-T Cohen 

1. 1.00 (0.18) 1.00 (0.18) 1.00 (0.23) 

2. 0.98 (0.17) 1.00 (0.17) 1.00 (0.25) 

3. 0.98 (0.19) 1.00 (0.19) 1.00 (0.26) 

4. 0.99 (0.17) 1.00 (0.17) 1.00 (0.23) 

s. 0.9S (0.19) 1.00 (0.19) O.C/7 (0.26) 

6. 0.94 (0.19) 1.00 (0.18) 1.02 (0.26) 

7. 0.89 (0.20) 0.99 (0.20) O.C/7 (0.26) 

8. 0.79 (0.18) 1.00 (0.18) 0.9S (0.26) 

9. 0.77 (0.17) 1.00 (0.17) 0.98 (0.22) 

10. 0.49 (0.27) 1.00 (0.26) 0.89 (0.34) 

Average 0.88 (0.19) 1.00 (0.19) 0.98 (0.26) 

The average beia is computed to be the arithmetic 

mean of all the estimated betas in the decile. 

The cross-sectional standard deviation is the slandard 

deviation of the estimated belas in each decile. 

Shown in Table 3 are the results of the simulation of 
5 000 shares in each decile with a. = 0.02. The cross­
sectional standard deviations of beta in decile 1 are equi­
valent to estimates of the standard errors of the beta esti­
mates5 and are typical for shares on the JSE (for evidence, 
see Bradfield & Bowie, 1993). 

To assess the information in Table 3 we use a well-known 
measure of the relative performance of estimators, the mean 
squared error (MSE). The MSE is a measure of the com­
bined effects of bias (defined to be the difference between 
the average estimated value and the true beta) and ineffi­
ciency, and can be calculated using the relationship (see Ap­
pendix): 

MSE = bias2 + variance 

The smaller the value of the MSE for a partipular esti­
mator relative to the MSEs of other estimators the better that 
estimator is in comparison with the others. The MSE of the 
OLS estimator in decile 6 is, for example: 

MSE = (1 -0.94)2 + 0.1~ 
= 0.03970 

The estimated MSEs corresponding to Table 3 are pre­
sented in Table 4. It is clear that the trade-to-trade estimator 
outperforms the other estimators in terms of MSE. It has no 
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Table 4 MSEs for the 
estimators based on the 
estimates of bias and 
variance in Table 3 

Decile OLS T-T Cahen 

1. .0324 .0324 .OS29 

2. .0293 .0289 .0625 
3. .036S .0361 .0676 

4. .0290 .0289 .OS29 

s. .0386 .0361 .0685 
6. .0397 .0324 .0680 

7. .0521 .0401 .0685 
8. .076S .0324 .0701 

9. .0818 .0289 .0488 
10. .3330 .0676 .1277 

Average .OSOS .0361 .0680 

bias, i.e. the average value of the T-T estimates is equal to 
the parameter being estimated, and the standard errors of the 
estimate are no larger than those of either of the other 
methods (see Table 4). 

It is also evident from Table 3 that the OLS estimates 
have approximately the same cross-sectional standard devi­
ations as the trade-to-trade estimates, but suffer markedly 
from bias. On the other hand the Cohen estimator has far 
more cross-sectional variance, but appears to be unbiased 
for the first nine deciles of thin trading. The betas in the 
tenth decile are biased downwards and indicate that further 
lagged coefficients are necessary at very high levels of thin 
trading.6 

Estimation of the bias component of the different esti­
mators 
The bias component in the estimates of beta is not related to 
the residual standard deviation since the bias is dependent 
only on the average length of time between the last trade in 
an estimation interval and the end of the interval; therefore 
we computed average betas for each type of estimator across 

Table 5 Average simu-
lated betas in each de-
cile across all levels of 
unique risk 

Decile OLS T-T Cahen 

1. 0.999 1.000 1.001 

2. 0.988 1.000 0.999 

3. 0.98S 1.000 1.001 

4. 0.980 1.000 1.00S 

s. 0.970 1.000 1.021 

6. 0.916 1.000 0.980 

7. 0.898 1.000 1.00S 

8. 0.86S 1.000 0.992 

9. 0.748 1.000 0.971 

10. 0.492 1.000 0.866 

Average 0.884 1.000 0.984 
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all four levels of residual standard deviation. The average 
bells are shown in Table 5. 

From Table 5 we observe that in tenns of unbiased esti­
mation, the trade-to-trade estimator is superior. The Cohen 
estimator shows no clear bias from the expected unity ex­
cept in decile 10, where we would anticipate having to use 
more than the one lagged coefficient used in these simula­
tions. The increasing bias with increasing levels of thin 
trading is evident in the OLS estimates. 

Assessing the Impact of different levels of unique 
rtsk on the efficiency of the estimators 
Given in Table 6 is a comparison of the cross-sectional 
standard deviations of the estimators at the two extreme 
levels of unique risk shown in Table I, i.e. 0.0005 and 0.01 
(see Table 6). 

From Table 6 it is evident that at the level of unique risk 
corresponding to the residual standard deviation of O.ot, the 
trade-to-trade estimator is only marginally more efficient 
than the OLS estimator, except for the most thinly traded 
shares. On the other hand the Cohen estimator has sub­
stantially higher standard error than the other two esti­
mators. 

At the lower residual standard deviation (0.0005), i.e. at 
low levels of unique risk, the Cohen estimator appears to be 
marginally more efficient than the OLS estimator (on ave­
rage), but both of these have far larger standard errors than 
the trade-to-trade estimates which are more efficient at all 
levels of thin trading. 

Clearly the trade-to-trade estimator is superior both in 
terms of efficiency and unbiasedness at all levels of thin 
trading and unique risk. 

The trade-to-trade estimator requires information regard­
ing the times of the trades in a share and the value of the 
market proxy at that time. In some cases the information 
about the timing is unavailable. It is theref <X"e useful to be 

Table 6 Cross-sectional standard deviations of betas at 
different levels of unique risk 

Melhod OLS T-T Cohen 

Unique 
ri1lt 0.01 0.0005 0.01 0.0005 0.01 0.0005 

Decile 
I. 0.0,10 0.0074 0.0907 0.0038 0.1385 0.0089 

2. O.GIM 0.0189 0.0884 0.0040 0.1344 0.0213 

3. 0.0,16 0.0261 0.0915 0.0053 0.1315 0.0280 

4. 0.0880 0.0280 0.0847 0.0042 0.1253 0.0'265 

s. 0.1042 0.0341 0.0936 0.0044 0.1331 0.0378 

6. 0.1009 0.0437 0.0927 0.0045 o.1414 0.0427 

7. 0.1103 0.0536 0.0966 0.0043 G.1411 0.0441 

l 0.1103 0.0623 0.0932 0.0047 G.1279 0.0S60 

9. 0.1345 0.0910 G.1023 0.0050 0.16,0 0.0789 

10. 0.2030 0.1732 G.1243 0.0061 o.2223 0.1765 

Averaae 0.1171 0.'17'17 0.0964 0.0047 0.1497 0.0691 
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able to decide between the Cohen and OLS methods for es­
timating a beta without requiring precise information re­
garding the times of the trades. By comparing the MSEs of 
the estimators it is possible to ascertain at which levels of 
thin trading the OLS estimator is superior to the Cohen 
estimator and vice versa. 

To establish the level of thin trading at which the Cohen 
estimator becomes superior to the OLS estimator we find 
the OLS estimate of beta at which the MSEs of the two 
estimators are equal. To do this we denote the OLS estimate 
of beta at which the MSE of OLS is the same as the MSE of 
the Cohen estimator by b. From Table 5 we can reasonably 
assume that the Cohen estimator is unbiased and so the 
MSE for the Cohen estimator is simply found by squaring 
the standard error of the estimate. We take the standard error 
for the Cohen estimator to be 0.26 and the standard error for 
the OLS estimator to be 0.19 (which correspond to the ave­
rage cross-sectional standard deviations at a level of unique 
risk equal to 0.02). The expressions for the respective MSEs 
are: 

MSE (OLS) = (1 - b',1 + 0.19?1, and 
MSE (Cohen) = o:m 

Equating the two expressions and solving for b yields 
0.82 as the value of the OLS estimate of beta for which the 
two MSEs are equal. Thus we have established that for 
about the first seven or eight deciles when the OLS esti­
mates of beta are greater than 0.82 (see Table 5) the OLS 
technique yields 'better' estimates than the Cohen estimator 
in terms of a smaller MSE. 

Conclusion 
The results of this simulation study show conclusively that 
the trade-to-ttade approach to beta estimation is both the 
more efficient and consistent of the well-known thin-trading 
correction procedures. This method of estimation does how­
ever require extensive data (at least data on a daily basis) 
and a well-traded and continuously updated market index. 
However, we did find that the Cohen estimator does correct 
for the biases induced by thin trading, but at the expense of 
efficiency. At most levels of thin ttading. the OLS estimator 
outperfonns the Cohen estimator in terms of its mean 
squared emr of the estimate. 

The Cohen estimator performs relatively more efficiently 
when there is less non-systematic randomness, i.e. at low 
levels of unique risk. However, a disadvantage of the Cohen 
estimator is that the determination of the appropriate number 
of lags (and leads) is problematic and hence it is not a tech­
nique which can be easily automated for all shares on the 
JSE. 

The simulation study provides insights into the effect­
iveness of the various ways of estimating a security beta. It 
is evident that thin trading severely biases ordinary least 
squares estimates of beta and a correction technique should 
therefore be used. On the basis of the two statistical dis­
criminators, i.e. unbiasedness and efficiency, the trade-to­
trade approach to estimating beta coefficients was found to 
be superior to the Cohen-type estimator. We therefore re­
commend its use in estimating risk statistics on the JSE. 
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Notes 
1. Cohen et al. (1983) point out a small inconsistency in Dim­

son's (1979) derivation of the aggregated coefficients method 
and present a revised estimator. 

2. The use of the normal distribution was based on convenience, 
comparability with other studies (e.g. Dimson) and justified by 
results reported in the Appendix. 

3. Bradfield & Barr (1989) ascertained that the efficiency of the 
Cohen-type estimators was affected by the level of non-syste­
matic (unique) risk even though, on average, the bias in the 
estimate of beta caused by the thin trading had been removed. 

4. See Dimson & Marsh (1983). 
5. In the deciles which represent the shares which are the most 

thinly traded the biases of the estimators of beta are themselves 
subject to an additional non-negligible variation. The variation 
arises because the bias is very sensitive to differences in the 
level of thin trading at the levels represented by those deciles. 
In the Appendix we give some indication of the magnitude of 
the increased variation. The inflation of the variance will not, 
however, affect comparisons between the estimators. For the 
other deciles the inflation of the variance is negligible because 
the bias is not as sensitive to changes in the level of thin 
trading, i.e. the bias is very nearly the same for all levels of 
thin trading within the range of thin trading represented by the 
decile. 

6. For the Cohen estimator no leading coefficient was used 
because the market proxy was constructed to be completely ef­
ficient, and only one lag was used. 

7. We generated 20 000 uniform deviates between the bounds of 
each decile using the SYST AT package, and computed <t and 
µ.1 for each generated q and then calculated the variance of (1 -
l,l,1)(1 - ¢). 
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Appendix 

A. Procedure for introducing thin trading into daily re­
turns: 
The simulated returns are generated using the market model 
which is usually written in the fonn: 

r, = a+ 13 r';' + e, 

The parameters necessary for generating the rewrns are 
the alpha and beta of the market model, as well as the return 
on market index (denoted r';'). For ease of comparison of the 
resultant estimators we chose alpha and beta to be fixed 
values, namely, zero and unity, respectively. 

For each share where q is the thin-trading parameter re­
presenting the probability that the share does not trade in a 
day and r, is the true, underlying daily return on the share on 
day r. 
a. setz=O 
b. sett= 0 
C. I= I+ l 
d. z=z+r, 
e. generate u, a unifonn random number between O and 

1 
f. if u > q then share is deemed to have traded 

ti' = z; allocate a value to the observed return 

z=O 
else share has not traded and therefore 

ti' = O; zero observed return 
g. gotoc. 

B. Evidence for use of normal distribution 
In the simulation the normal distribution was used to simu­
late the daily returns which were then aggregated to fonn 
simulated observed monthly returns. In order to ascertain the 
validity of this assumption, we calculated a few summary 
statistics for both daily and monthly returns of the JSE 
Actuaries Overall Index. The skewness, kurtosis and the 
Wilk-Shapiro statistic (a test for nonnality) were compute.cl 
(see Table 7). 

The results indicate that the assumption of normality is a 
reasonable one for the monthly returns (in the index), but 
not for the daily data where even when outlying rewms are 
excluded, the measures of peakedness (kurtosis) reveal that 
the tail areas are heavier than expected. The distribution of 
the residual component is not tested here. 

C. Inflation of cross-sectional standard deviation for 
OLS estimator 

We can write the average beta obtained in a decile as 

and the variance of this average will depend on not only the 
variance of I' but also the variance of plim P, with respect 
to q which is distributed unifonnly across the decile. (The 
variance of the error tenn is also dependent on q and hence 
will also have its estimated variance inflated by the vari­
ability of the q in the decile. The effect of the inflation of 
the standard error is not very large in comparison with large 
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Table 7 Measures of non-normality for the 
]SE-Actuaries Overall Index 

Frequency No. obs Skewness• Kunosir W-Stat3 

Daily (all) 1054 -l.9S 17.64 0.866 
(-26.574) (123.010) (0.0000) 

Daily4 (red} 1047 --0.04 4.54 0.9S38 
(0.58) (30.02) (0.0000) 

Monlhly 158 --0.60 1.29 0.9794 
(-3.08) (3.33) (0.3S66) 

1. Normal distribution has skewness coefficient of 0. (t·ltali1-

tic given in parenthesis.) 

2. Normal distribution has kurtosis coefficient of 0. (t-slatistic 

given in parenthesis.) 

3. Normal distribution has W-Stat of 1. (Significance level 

given in parenthesis; a low significance level indicares de­
panure from normality.) 

4. The reduced daily set comprises all the daily returns except 

for 7 outlying n:wms which were less than --0.06. 

standard errors caused by the residual variance at typical 
levels to be found on the JSE.) It can be shown (see, for ex­
ample, Dimson & Marsh, 1983) that 

" E[~J = (1 - ()(1 - µ 1)~ 

where k is the number of days in the estimation interval (20 

in this simulation case) and µ, is average proportion of the 
interval between the last trade in the interval and the end of 
the interval (in those intervals in which trades occur). On the 
basis of the simulation (i.e. that the trades occur at random 
and with constant probability on each day) this parameter 
can be expressed in terms of q: 

(k-lr I l+k 
~J 

The variance of the first term (1-¢) in the expression for 
the probability limit of the estimated beta is quite easily 
obtainable as follows: 

If Z = </ then Var[ZJ = Var[] - </J. 

Since q is distributed U(a,b), i.e. uniformly between the 
bounds in the decile a and b, Z will have density function 
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Table 8 Expected cross-sectional variance for OLS 
betas with residual standard deviation of 0.01 

Standard error (hued Variance in Tbeoreuca1 crou-sa:limal 
Decile on T-T enon) bias Sid deY. of OLS Cllimala 

6. O.QIJ27 0.0001 0.0932 
7. 0.()1)66 0.0001 0.0971 
8. O.QIJ32 0.0005 0.0958 
9. 0.1023 0.0016 0.1098 
10 0.1243 0.0185 0.1843 

/.(z) = 
1 I _ }-I 

b-a le 

and the expectation and variance can be derived as: 

E[ZJ = 
(b-a)(/c+ 1) 

1 
Var[ZJ = [ffi•1 ~ 1 J - E"1(ZJ 

(b-a)f2k+l) 

yielding, for example when a = 0.8198 and b = 0.98 
(decile IO's bounds), Var(ZJ = 0.02737. 

The variance of µ. 1 is not easy to write in a closed form 
and the distribution of the product (1 - <f)(l - µ.1) will be 
even more difficult to ascertain. We therefore resorted to 
Monte Carlo techniques7 to estimate the variance of the bias 
term for each decile. The results of the Monte Carlo runs are 
reported in Table 8. 

D. A well-known decomposition of the MSE 

If X is an estimator of 8 and we denote the expectation 
function by E[•J then 
MSE = E({X-8/J 

= E({(X - E[XJ) + (E[XJ - 8)IJ 
= E({X - E[XJ JI + (E[XJ - 9) 2 

+ 2 (E[XJ - 8) E({X - E[XJ )/ 
= Var[XJ + bud 

where Var(•J is the variance function and bias represents 
the difference between the expected value of the estimator 
and 8, the value of the parameter being estimated. 




