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There are numerous methods for estimating forward interest rates as well as many studies testing the accuracy of these 
methods. The approach proposed in this study is similar to the one in previous works in two respects: firstly, a Monte Carlo 
simulation is used instead of empirical data to circumvent empirical difficulties: and secondly. in this study. accuracy is 
measured by estimating the forward rates rather than by exploring bond prices. This is more consistent with user objectives. 
The method presented here departs from the others in that it uses a Recurrent Artificial Neural Network (RANN) as an al­
ternative technique for forecasting forward interest rates. Its performance is compared to that of a recursive method which 
has produced some of the best results in previous studies for forecasting forward interest rates. 

Introduction 
In the market where government obligations of various 
maturities bear coupons at different rates and where ordinary 
income and capital gains are subject to unknown and varying 
effective tax rates, the tenn structure of default-free interest 
rates is not directly observable. This is consistent with Jordan 
(1984), Livingstone (1989), McCulloch (1971) and Ronn 
(1987). At the same time, for financial research and practice, 
it is essential to know accurately the term structure of spot 
rates and the underlying tenn structure of forward rates. 
Buono, Gregory-Allen & Yaari ( 1992) contend that this can­
not be obtained from the yield curve of treasury strip. This is 
due to the distinct and separate markets where those 
obligations are traded. Therefore, the term structure under­
lying the coupon bond market must be estimated from bonds 
traded in a given market. 

study, one was concerned with estimation of forward rates 
rather than bond prices to meet user objectives. Recurrent Ar­
tificial Neural Network is presented as an alternative tech­
nique for forecasting forward rates. Its performance is 
compared with that of a recursive method which has pro­
duced some of the best forecasting results in a previous study 
by Buono, Gregory-Allen & Yaari ( 1992). 

According to Lee ( 1986) and Kishimito ( 1989), the term 
structure estimates are used for the management of fixed-in­
come security portfolios and for pricing interest rate-contin­
gencies claims such as fixed-income securities and options. 
They are also used in testing theories about the term str11ct11re 

itself. This is expounded by Brenan & Schwartz ( 1986). Fur­
thermore, they are used as inputs to Monte Carlo simulations 
to value complex claims such as mortgage-based securities 
(Dattatreya & Fabozzi, 1989). 

There are numerous methods for estimating forward rates 
as well as many studies testing their accuracy (Buono, Gre­
gory-Allen & Yaari, 1992). The accuracy depends on either 
knowing the true underlying forward rates or the true distri­
bution of errors associated with those rates. However, in the 
empirical data, the true distribution of the errors is unknown, 
which probably leads to biased statistical tests. Therefore, in 
this study, a Monte Carlo simulation was used instead of em­
pirical data to circumvent the empirical difficulties. Buono, 
Gregory-Allen & Yaari ( 1992) contend that Monte Carlo sim­
ulation allows for a definition of a set of true forward rates 
with a known distribution of errors for comparison with the 
accuracy of various methods of estimating those rates. In this 

Estimation methods 

The notations below are used for the two methods: 
- NT: number of bonds maturing in period T. 

T,: maturity period for bond i, T = I, ... , 20 (20 six­
month periods). 

- P,T: price per one dollar face value of bond i maturing T 
periods hence. 

C,,: cash flow per one dollar face value of bond i to be 
paid t periods hence (t = I, ... , T). 

Y,T: yield to maturity of bond i. 
- r

11
: forward interest rate on bond i over period t-1 tot. 

- r,: the arithmetic average of all forward rates over 
period t-1 tot (for bonds i = 1, ... , N). 

- R,,: spot interest rate on bond i over period Oto t. 

Where: 

(I+ R,,)' = ( 1 + r,. 1)( I + r,.2) ••• (I + r .. ) 

The ex-coupon price of bond i maturing at Tis: 

T C 
p " 1,/ t 

,, r = L.., < I + r, ,.) 
t = I ' 

(I) 

(2) 

which can be restated as a function of the spot interest rates: 

T C 
p " '·' t iT = L.., (I +R, ,-) 

I= I . 

(3) 

or function of the forward interest rates: 
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; c,., 
P,.r = ~ , 

(4) 

I= I n ( I + r,. ,) 
., = I 

Recursive method 
The set of r, is derived from Equation (4) in a recursive 
manner [ 17), starting with r1• For each bond i (i = I, ... ,NT) 
maturing at T= I , 

c c,., 
p = '·' 

'· 1 ( I + r ) ,, I (I+ R,. 1) 

which implies 

= Si_, 
r,.1 p 

1, I 

N, 

rr,., 
- I= I r, - -/1,'-

r, is define by: 1 

For each bond i maturing at T=2, 

c c 
p = '·' + ,.2 

'· 2 ( I + r,. 1) ( I + r,. 1 )( I + r,. 2) 

(5) 

(6) 

(7) 

(8) 

The average rate r1 derived in (7) is substituted and it yields 
for every bond maturing at T=2, 

c c 
P,, 2 =(I:·:,)+ (I +r

1
)c°i2+r,.

2
) 

(9) 

which implies a set of period 2 forward rates: 

c J 
'·- - I 

[ 
C, 1 J (I +r1) p 2----· -

'· ( I + r 1) 

r,.2 = (10) 

These rates are averaged over the set of bonds i = I, ... ,Ni 
and then substituted in the price expression for three-period 
bonds, and so on. In general, the forward rate period is given 
by: 

N, 

Ir,., 
r = !....:.L_ 

I N, 

where 

C, I 

r,.,=~1-1 [ ~:_, C 1-1 
n (I+ r .) P - """' . '·' .'I ,., 4.t6' .\ 

s = I " = I n ( I + r q) 

q=l 

Recurrent Artificial Neural Networks (RANN) 

(11) 

( 12) 

Zurada (1992) in presenting artificial neural systems suggests 
that the back-looping of an intermediate layer or of the output 
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layer, allowed in recurrent networks, makes it possible to take 
past information into account. The forecast provided by a 
recurrent network depends on the example which is presented 
as input, but also on the preceding example and so on and so 
forth. The forecast provided at time t, thus, depends on the 
whole history preceding t. This property is interesting since 
for each series presented as input to the network, all the 
series' past values are taken into account for the forecast. 
Zurada ( I 992) states that this deals with the problem of 
determining the relevant lags of the series. 

A multilayered network with looping back of the output 
layer is illustrated in Figure I. 

X,., 

'92-i 
Xie., 

<Ji_, 
Figure I Recurrent network architecture with looping back of the 
output layer 

The network considered here contains k inputs (X 11, Xi,, .... 
Xk,) at time t, h hidden neurons and one output layer 0, at 
time t. On the input layer a back-looping neuron 0,. 1 corre­
sponds to the output neuron at time t-1. Initially, this neuron's 
value is taken randomly. 

The algorithm used, in this study, is the quick-propagation 
learning algorithm which is consistent with Fahlman 's ( 1988) 
empirical study on fast learning variations on back-propaga­
tion. Input/output pairs are presented to the network. The in­
put to RANN is three-dimensional; it consists of the price P,, 
of bond i that will mature at time t, the corresponding coupon 
cash flow C., and the forward rate r11_1 at time t-1. The output 
is the forward rate r, at time t. The forward rate r, at time t is 

the average of the N, forward rates given by RANN for the N, 
input/output patterns at time t as in Equation ( 11 ). 

Simulation of the data 
In order to compare the recursive method and the RANN 
method, a Monte Carlo simulation with 100 trials for JOO 
bonds that will mature at each semi-year t, t = I, ... , 20 was 
used. The choice of I 00 trials for I 00 bonds, which is 
consistent with previous studies, was made on the assumption 
that this would provide statistically significant and reliable 
findings. Each trial has several steps as in Buono, Gregory­
Allen & Yaari ( I 992): 

I. Four profiles of forward interest rates were generated (in· 
creasing, decreasing, flat and humped) matching the four 
kinds of yield curves observed in practice as follows: 

(a) For the increasing term structure: 

- +~ ti -2 20 r1 - r 1 100 
, or t - , ... , , (13) 

r, = 2.5% 

(b) For the decreasing term structure: 
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~ " t=? 20 r = , 1 - , 1or -· ... , , 
I 100 

r, = 7.5% 

(c) For the flat tenn structure: 

r,=r1,fort=2, ... ,20, 

r,= 2.5% 

(d) For the humped (random walk) tenn structure: 

r
1 

= +, , fort= 2, ... , 20, 

where + o~ U(O, 2% to 5%). 

( 14) 

(l 5) 

(16) 

The coefficient 1/100 in (a) and (b) is a scaling factor to 
assure feasible rates. Similarly, the range of the unifonn 
distribution in ( d) is chosen experimentally to maximize 
realism. So far all but the random walk are smooth func­
tions. Smoothness is appropriate for future spot rates, 
which average forward rates, but would be a restrictive as­
sumption for forward rates. Therefore, the forward rates 
was perturbed in (a) through (c) by: 

r*1 =r1 +t, fort=l, ... ,20 (17) 

where,:~ N(0.001,1). 

The mean of the nonnal distribution is chosen for realism. 
2. Arbitrarily chose a range of 2% and 6% for the semi-an­

nual coupon rates, but randomly assigned a coupon rate to 
each issue within that range. Specifically, the coupon rate 
of bond i is detennined as: 

C, ~ U(0.025, 0 to 0.05), i = l, ... , N (18) 

where U is a unifonn distribution with mean 0.025 and 
range Oto 0.05. 

3. Actual forward rates and cash flows were used to calcu­
late the price of the bonds as reflected in equation (19). 

T C 
p = " ·,,, + 

1,1 ~ 1 E,, (19) 

I= I n ( I + r_:) 

s = I 

To mimic reality, two components were added to the 
price: homoscedastic and heteroscedastic. 
c ~ N(O, cr) 

with: 

o = constant = I, if e, is homoscedastic. In addition 
cr ~ U(0.0015, 0.001 to 0.002), if E, is heteroscedastic, 
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corresponding to a randomly distributed noise with a 
mean of0.0015 and a range in the interval [0.001,0.002]. 

Results 

RANN was trained with different topologies (4-3-1, 4-4-1, 4-
5-1, ... , 4-8-1), momentum (0.1, ... , 0.9) and learning rate 
(0.1, ... , 0.9). The threshold taken was equal to 0.000 I and 
the maximum number of epochs was equal to I 0000. The best 
perfonnance was given by three hidden neurons, momentum 
= 0.9 and learning rate = 0.5. The sigmoid function was used 
for the hidden neurons as activation function: 

fix) = I 
(I+ exp(-x))' (20) 

and for the output neuron the linear function: 

fix) = (
0

• (21) 

The whole set of data of ( I 00*20 = 2000) patterns (20 
semi-years) was divided into two subsets: the first 2/3 for 
training RANN and last 1/3 for the testing. 

The Square Average Mean Absolute Error (SAMAE) was 
used in estimating the perfonnance of RANN and the recur­
sive method since SAMAE penalises large errors to a greater 
extent. It is more sensitive to unusually large errors. The sta­
tistical properties ofSAMAE are widely accepted in the stud­
ies cited. 

The summary results of the finding is displayed in Table l. 
The comparison of errors in forward rates estimates on ho­

moscedastic and heteroscedastic simulated data reveals that: 

- The results for the recursive method and RANN are com­
parable for homoscedastic noise. 

- RANN is more accurate than the recursive method with 
heteroscedastic noise. 

This can be explained, on the one hand, by the fact that in the 
homoscedastic case the perturbance of the prices is not big 
and the data were generated by the same fonnula from where 
the recursive method was drawn. Therefore, the recursive 
method has a previous knowledge of the relationship existing 
between the input variables and the output one. Thus, it is 
more willing to come up with slightly better results than 
RANN, which does not have any previous infonnation about 
the correct structure of the data. On the other hand, when 
introducing the heteroscedastic noise, the result is that the 
data now admit a noise component that the recursive method 
does not have any prior knowledge about. There is a new 
noise component in the data that is not accessible by the 
recursive method (noisy to the RANN method) whereas in the 

Table 1 Forecast error in forward rates averaged over twenty periods 

Homoscedasllc nmse Hcteroscedastic noise 

Shape AVG• (Rec) SD* (Rec) AVG (RANN) SD(RANN) AVG(Rec) SD (Rec) AVG(RANN) SD{RANN) 

Increasing 0.002 1.414 0.0018 0 00015 0.0088 0.00015 0.0039 0.00025 

Decreasing 0.0021 00002 0.0026 0.0003 0.012 0.002 0.0036 0.0001 

Random 0.00185 0.00005 0.0085 0.0015 0.0013 0.0001 0.009 0.0001 

Flat 0.00043 0.00002 0.00002 0.00001 0.0004 0.00006 0.00002 0.00001 

*AVG is the average of the minimum and maximum values ofSAMAE for the 100 data sets and SD is its Standard Deviation 
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homoscedastic experiments the recursive method exploits 
knowledge above the type of noise in the data. The recursive 
method does not perform as well as RANN, which tries to 
find the relationship existing in the data and hence is not 
dependent on certain axioms or criteria. Moreover, artificial 
neural networks were proven by Zurada ( 1992) to be good at 
modelling non-linear relationships and the forward interest 
rate data involves non-linearity in its structure. 

Conclusion 
The empirical study conducted in this article for forecasting 
forward interest rates has lead to the following observations: 
- The results for the recursive method and RANN are com-

parable for homoscedastic noise. 
- RANN is more accurate than the recursive method with 

heteroscedastic noise. 
The superiority of RANN is generally present when the term 
structure of forward rates has a complex shape. 

As further work one can site the application of RANN in 
forecasting future spot rates, which are more complex than 
forward rates and tend to involve a lot of irregularities in the 
future. To add to the performance of RANN one can further 
use fuzzy membership functions for the input data. 
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