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Distribution planning, which includes Vehicle Routing and Scheduling Problem (VRSP), has become an important 
element in Supply Chain impacting its service level and efficiency. Computer Aided Routing and Scheduling (CARS) 
has been developed and implemented, which can handle complicated distribution models using advanced heuristic 
optimization algorithms.  A classification scheme is introduced to classify various types of routing and scheduling 
problems in a structured manner, based on the main objects of VRSP. The integrated system described in this paper can 
manage the dynamic aspects of the Supply Chain in practice. The modelling and solution approach in the CARS 
optimization engine, its user interface, sample performance measurements, and planning and operational features of the 
system are described in detail. 
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Introduction 
 
Distribution plays an essential role in the delivery of value 
within the supply chain, since value is not realized until the 
product reaches where it is needed. With the growth of e-
commerce and home delivery services, distribution costs 
have become more important. Widespread application of 
outsourcing strategies, which has reshaped organizations 
from centralized manufacturing facilities to geographically 
dispersed networks of resources, also increases the 
importance of distribution services (Chopra, Dougan & 
Taylor, 2001; Chopra & Miegham, 2000). 
 
The most important planning and operational decision 
related to distribution planning in the supply chain planning 
is the routing and scheduling of deliveries (Chopra et al., 
2001). Vehicle Routing and Scheduling Problem (VRSP) is 
a significant issue in both supply chain planning and 
distribution optimization (Beasley, 1983; Bodin et al., 
1983).  
 
The primary objective of this paper is to introduce and 
describe a distribution planning system, based on an 
innovative VRSP classification scheme. The general user 
should appreciate the simplicity of the application and at 
the same time the multiple features and integration of the 
system.  This information is believed to enhance the 
knowledge of system developers and operations managers 
in developing and evaluating optimization systems for 
distribution planning in Supply Chain. The system contains 
innovative algorithms and an advanced optimization 
engine. However, the primary attention here is paid to the 
managerial issues and assuring the applicability of the 
system.  
 

The reminder of this paper is organized as follows. After 
describing the development motivation, a classification 
scheme for VRSP will be given in the following section. 
The modelling and solution approach for solving real 
routing problems will be explained in Section 4. The 
optimization algorithms and implementation results will be 
presented in Section 5 and 6, respectively. Capabilities and 
important features of CARS will be discussed in Section 7. 
Finally, management aspects of the application, some 
concluding remarks and the direction for further research 
will be done in Section 8. 
 
Development motivation 
 
Companies are building responsive supply chains and 
seeking an efficient resource utilization to face off stiff 
competition and customer pressure for higher service 
levels. A critical decision relates to distribution planning 
and in particular to VSRP. A large body of research and 
modelling literature has been devoted to VRSP (Chopra & 
Meindl, 2004). Most of such work, however, concentrated 
on hypothetical or simplified problems and disregarded 
many practical aspects of such problems. At the same time, 
many practical problems have been tackled by different 
commercial systems, but little has been published about 
them. 
 
Computer Aided Routing and Scheduling (CARS) is a 
distribution planning system developed to handle various 
types of problems arising in practice. CARS has avoided 
the typical commercial software issues, such as using sub-
optimum solutions, non-user friendly and complex 
interface applications, or static optimization. In a handful of 
practice applications to date, CARS has yielded significant 
improvements over traditional systems or intuitive 
solutions.  
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CARS may be efficiently customized to meet a wide range 
of application characteristics and users' needs. Its 
optimization algorithm is general enough to cover a range 
of dimensions and parameters. Since the system 
development was based on a comprehensive review of 
various types of practical situations, it is expected to 
become popular in industries with complicated supply 
chain requirements. Important features of CARS may be 
stated as follows: 
 
 High flexibility to meet various logistics situations 

and clients needs. 
 
 Powerful optimization algorithm to tackle complex 

problems effectively. 
 
 Intuitive graphical user interface for effective analysis 

and improvement of results. 
 
 Flexibility to integrate the users know how with the 

computational power of advanced optimization 
algorithms. 

 
VRSP classification 
 
A wide variety of variables in VRSP makes the system 
complex, and thus calls for an appropriate classification 
scheme (Derochers, Lenstra & Savelsberh, 1990). The 
proposed system should handle various types of 
distribution planning cases. Such complex cases can only 
be modeled by proper definition of the attributes of VRSP 
objects. Figure 1 illustrates a typical distribution network. 

 
Figure 1: A simplified distribution network 

 
We define VRSP simply as ‘planning the efficient flow of 
goods between facilities by a fleet of carriers through the 
distribution networks’. This statement reveals the main 
components or objects of VRSP problems, namely, goods, 
facilities, carriers and distribution networks. Each object 
may have its owners, who impose their objectives and 
restrictions on the problem. For example, drivers may be 
considered as the owners of vehicles who may impose 
working time or region constraints. The distribution 
planning model is depicted in Figure 2.  

 
Figure 2: The distribution planning model 

 
In this section, a classification framework is developed 
based on main components of VRSP. The system consists 
of objects with interrelated attributes. Objects are related to 
each other through links, as in Figure 2, described below.  
 
 Load, the link between goods and vehicles, is a set of 

products or parts which are put on vehicles.  
 

 Trip, the link between vehicles and 
distribution networks, is a set of paths that 
a vehicle should traverse.  
 

 Path, the link between distribution 
networks and facilities, is the set of arcs 
that connects locations.  
 

 Demand or supply, the link between 
facilities and goods, is a collection of 
goods that should be transported between 
locations.  

 
The constraints in this model, which are based on attributes 
of objects and links, may be divided into four categories 
(Bodin et al., 1983):  
 
1- Constraints based on attributes of objects, 

like the capacity limit of vehicles. 
 
2- Constraints based on attributes of links, 

like the consistency between type of goods 
and vehicles.  

 
3- Constraints based on the consistency of 

elements of an object, like a constraint on 
the mixture of two types of goods in 
distribution.  

 
4- Constraints imposed on the system by the 

owner of objects like limitation on working 
hours of drivers.  
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Sample attributes of VRSP objects are illustrated in Table 
1. Each attribute of an object may be the source of a 
particular constraint. Using the above framework, various 
types of problems may be defined.  
 
 

As the above table shows, despite a simple definition, 
VRSP is a complex optimization problem. The objective 
function of such a problem may be defined based on a 
function of any attribute of the problem solution. The 
objective function might be maximization, like maximizing 
capacity utilization, minimization, like minimizing travel 

 
Table 1: Sample attributes of vehicle routing objects 

Sample attributes Object/Link No. 
Type 
Number 
Open and close time 
Load/Unload equipments 
Load/Unload time 
Waiting time 
Break time 
Dependency to other Facilities 
Region 

Facility 1 

Capacity 
Number 
Ownership 
Type 
Equipments 
Dependency to other Carriers 
Dependency to other Locations 
Delivery Costs 
Drivers: 
                  Work start and finish time 
                   Familiarity with regions 
                   Break time 
                   Pay structure 

Carrier 2 

Road Type 
One way roads 
U-turn avoidance 
Restriction on vehicle (type/capacity) 
Toll 
Mean vehicle speed 

Distribution Network 3 

Type 
Quantity 
Conflict with other goods 
Special carrier requirements 
Priority in delivery 

Goods 4 

Quantity 
Split rules 
Priority on delivery 
Dependency on other loads 

Load 5 

Number of route per vehicle 
Number of stops 
Region 
Dependency on other trips 

Trip 6 

Road Segment 
Distance 

Path 7 

Type 
Source 
Destination 
Quantity 
Uncertainty in quantity 
Uncertainty in time 
Time window 
The time when the demand information become available 
Customer preferences 
Delivery Type 

Demand/Supply 8 
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time, mini-maxing like balancing the load between trucks, 
or any combination of the above.  
 
CARS modeling and solution approach 
 
The complex and dynamic environment of businesses calls 
for flexible systems. A powerful optimization algorithm 
without the ability to handle specific users' needs is 
completely ineffective. In real cases, numerous 
circumstances arise based on a specific situation in one or 
several objects. For example, if the user wants to avoid 
assignment of a specific driver to a store, the system should 
efficiently support it. On one hand, development of system 
architecture to handle the detail requirements of users 
results in high complexity of the system. On the other hand, 
from a practical point of view, the complexity of a system 
is regarded as a disadvantage.   
 
In developing an optimization system for real problems, the 
most critical consideration is the complexity and broad 
range of requirements of clients in the design stage. 

Developing a system architecture without taking a 
particular function into account would either hinder the 
application of the system or deteriorate its efficiency. The 
most appropriate solution is to build enough flexibility into 
the system to adhere with any user requirements. For 
example, providing a utility to assist users in deciding on 
some aspects of the solution enables the system to cope 
with most dynamic business requirements. 
 
The architecture of CARS is developed based on the 
distribution object models, considering most of variations 
which may be found in practice. The data structure is the 
foundation of an optimization system. The flexibility of the 
system and the configuration of objects to represent the real 
world problem are based on the data structure. Also, 
development of data structure according to the logic of the 
algorithm highly enhances the efficiency of system in 
solving the problem.  
 
 

 
Figure 3: The VRSP objects map used in CARS [30] 

 
 
The VRSP objects and their rough relationships are shown 
in Figure 3. This object map is developed by using the 
VRSP basic model presented in Section 2, and is a 
foundation for CARS development. These objects are 
divided into two categories, static and dynamic. Static 
objects are produced from the problem data, while dynamic 
objects are created by the system during the construction of 
a solution to the problem. Static data are related to 
locations, goods, orders, distribution network and vehicles. 
Dynamic objects are mainly the components of the problem 
results. Each object has individual attributes and some 
relational attributes, which maintain its relation with other 
objects. Constraints of the problem are formed by using the 
individual or relational attributes of objects.  
 
The objective function is the weighted sum of several 
attributes of the solution. The user can set the components 
of the solution as well as their weights. If cost is the 
objective, several predefined cost components are 

available, and the user can select them from a list and set 
their weights to construct the cost function. In real cases, it 
is preferred to allow the system to handle soft constraints, 
which are managerial rather physical constraints. In some 
cases, such as time window constraint, company policies 
tolerate some deviation from the target values. The 
weighted sum of soft constraints is also included in the cost 
function. An overview of optimization algorithm will be 
described in the next section.  
 
CARS optimization engine 
 
VRSP are known to be NP-hard – rather impossible to 
solve mathematically (Tan, Lee & Ou, 2001). Thus, 
efficient heuristic algorithms should be exploited to tackle 
this class of problems. Several families of heuristics have 
been developed for VRSP. Heuristics approaches for 
solving VRSP can be broadly classified into four categories 
namely, construction, improvement, evolutionary and 
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learning approaches (Cordeau et al., 2004). Smart 
combination of the routines from two or more approaches 
may also provide promising hybrid algorithms (Tan, Lee & 
Ou, 2001; Moscato & Cotta, 2003). In this section, first the 
framework of these approaches will be reviewed. 
 
Construction algorithms 
 
In construction heuristics, nodes are selected successively 
until a final solution has been built. Saving (Clarke & 
Wright, 1964) and Sweep (Gillett & Miller, 1974) are the 
most popular algorithms in this class. In sequential 
implementation one route is constructed in each iteration, 
while in parallel version several routes are simultaneously 
built (Laporte et al., 2000). Other well known construction 
algorithms are “cluster first then route” (Fisher & Jaikumar, 
1981) and “route first then cluster” (Beasley, 1983). In 
applied algorithms, this type of routines is widely used to 
construct the initial solution. 
 
Improvement algorithms 
 
In this type of algorithms, the initial solution is iteratively 
improved by exploring solution space. Local search 
algorithms are the most widely used classical improvement 
algorithms. The structure of local search algorithms can be 
divided into three components (Ching & Russel, 1996). The 
first component is the routine for constructing initial 
solution. The algorithm may start with a solution 
constructed randomly or utilize a construction algorithm to 
obtain a good starting point. Neighborhood structure is 
another component which heavily influences the behavior 
of the algorithm. It can be defined by choosing the type of 
move and the length of string for move (Laporte et al., 
2000).  
 
Evaluation rules are other component of local search 
algorithms. Two extreme strategies are accept-first and 
accept-best (Bräysy & Gendreau, 2000). In accept-first 
strategy the first neighbor which improves current solution 
will be accepted, while in accept-best strategy the best 
possible neighbor will be accepted. 
 
In advanced improvement algorithms, which are known as 
metaheuristics, a sophisticated search routine is exploited to 
escape the local optima trap and obtain high quality results.  
Simulated Annealing (SA) (Ching & Russel, 1996) and 
Tabu Search (TS) (Branddao & Mercer, 1997; Glover, 
1993; Glover & Laguna, 1997) are the most well known 
algorithms in this category. High flexibility and 
performance of these algorithms make them as the most 
promising candidates for optimization engine in advanced 
optimization systems. In our experiences of various 
practical applications (Modares, Somhom & Enkawa, 1997; 
Somhom, Modares & Enkawa, 1987), SA algorithms need 
more parameter adjustment and provide lower robustness 
compared to TS ones.  
 

Evolutionary algorithms 
 
The basic mechanism in evolutionary approach is 
combining selected members in a set of generated 
solutions. Genetic Algorithms (GA) (Homberger & 
Gehring, 1999; Thangiah & NygardJuell, 1991) and 
Memetic Algorithms (Moscato & Cotta, 2003) are the most 
applied heuristics in this class. The foundation of GA is the 
survival of fitness principle which maintains a high 
probability of generating the highest level compatible with 
the environment. Solutions interact, mix together and 
produce new offspring that hopefully retain good 
characteristics of the parents. Selection, recombination and 
mutation are basic operators of GA that conduct evolution 
process toward higher quality solutions. The most 
important issue in application of GA to a specific problem 
is representation phase in which features of the problem are 
encoded as a chromosome to define a member of the 
solution population. This condition hinders application of 
GA to environments in which the specification of problem 
continually changes according to new situation in business. 
 
Learning algorithms: 
 
The Neural Network (NN) and Ant Algorithms (Reimann, 
Doerner & Hart, 2004) are the most prominent approaches 
in this category. We have developed several NN algorithms 
for Traveling Salesman and Vehicle Routing Problems 
(Modares, Somhom & Enkawa, 1997; Somhom, Modares 
& Enkawa, 1997;  Somhom, Modares & Enkawa, 1999a; 
Somhom, Modares & Enkawa, 1999b).  In these 
algorithms, specifications of the optimization problem are 
embedded into the configuration of network and learning 
process. Therefore, the algorithm is highly problem 
specific. Despite their promising results, these algorithms 
need more enhancements to be incorporated into 
commercial optimization systems.  
 
CARS’ optimization algorithm 
 
As indicated by Cordeau et al. (2004),”Algorithms are 
highly accurate and some are also quite fast. What is now 
needed is greater stress on simplicity and flexibility.” Our 
experience in system development confirms the above 
statement. In developing CARS algorithm, the most 
important criteria have been flexibility and speed. Most of 
new routines developed by researchers are problem 
specific. They might improve the quality of results at the 
expense of reducing the flexibility of algorithm to handle 
new constraints or increasing its computation time. In this 
section, first, the initial solution and neighborhood 
generation, which are two pillars of improvement 
heuristics, are described and then the algorithm is outlined. 
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In TS algorithm, during the search process, current solution 
may deteriorate from one iteration to the next. To avoid 
cycling, recent explored solutions are temporarily declared 
forbidden by putting their selected attributes in the Tabu 
list. The TS algorithm has been evolved over time and 
several innovative features are included in this algorithm by 
researchers to enhance its performance (Bräysy & 
Gendreau, 2000). Enhanced neighborhood generation 
mechanism, using various diversification and 
intensification strategies to guide the search, post 
optimization, combination with other algorithms, and 
parallel implementation are various strategies which are 
considered by researchers. The granular Tabu search 
algorithm of Toth and Vigo (2003), the unified Tabu search 
algorithm of Cordeau, Laporte & Mercier (2001); Cordeau, 
Laporte & Mercier, (2004)  and Taillard et al. (1997) 
algorithm are recent algorithms which have shown 
promising results.  
 
While we have considered innovative features of proposed 
algorithm by researchers, CARS’ TS algorithm has unique 
features, described below. TS algorithms start with an 
initial solution which can be developed by a simple 
construction algorithm. Solomon (Somhom et al., 1987) 
proposed several heuristics for the VRSP which are suitable 
candidates for building initial solution of TS algorithms. 
Among them, I1 algorithm which is a cheapest insertion 
routine has been used by several researchers for building 
initial solutions. We have implemented a modified version 
of Solomon's I1 algorithm for general VRSP. 
 
The algorithm starts with initializing a route using a seed 
customer. The seed customer is the customer with the 
lowest cost when assigned. The remaining unassigned 
customers are sequentially inserted into this route as far as 
capacity restriction of truck or other hard constraints 
permits. For inserting a customer in a route, total cost of 
insertion is evaluated. The initialization and insertion 
procedure continue until all customers are serviced.  
 
The most popular neighbor generation operators are 
Relocate, Exchange, 2-opt* and CROSS [5].  The Relocate 
operator moves one visit from its position into a new 
position, while the Exchange operator swaps two visits. In 
order to improve the quality of solution or speed up the 
algorithm, numerous enhanced routines have been 
proposed by researchers (Bräysy & Gendreau, 2000; 
Laporte et al., 2000). λ-interchange, GENI-Exchange 
(Gendreau, Hertz & Laporte, 1992), eject chain (Glover, 
1991) and cyclic transfer (Thompsn & Psaraftis, 1993) are 
other successful routines. 
 
Our experiments show that a combination of relocation, 
exchange and 2opt* can provide high quality results within 
low computational time. We have examined more complex 
routines like CROSS and 3-opt, which resulted in no 
meaningful additional value and in higher computation 
time. Since the problem contains contradicting objectives, 
using specific strategies (Garcia, Potvin & Rousseau, 1994; 
Lau, Sim & Teo, 2003) to artificially help the algorithm in 

finding better solutions, is harmful and reduces the 
effectiveness of the algorithm. 
 
In implementing the algorithm for real problems, 
managerial restrictions are considered as soft constraints. 
For each soft constraint, a penalty term will appear in the 
objective function. In CARS only basic constraints like 
capacity restriction or route length limit are considered as a 
hard constraint. By increasing the weight of penalty term 
for a given soft constraint in the objective function, the 
possibility of satisfying this constraint will increase.  
 
The algorithms starts by generating an initial solution based 
on the procedure explained earlier. The neighborhood 
generating mechanisms, namely Relocate, Exchange and 
2opt* are selected randomly. Based on several experiments, 
the chance of selecting 2opt* operator is set to be five times 
less than Relocate and Exchange. Since the associated cost 
of each stop, trip and tour is maintained separately, the 
search procedure is guided by considering attractive moves. 
This is a specific implementation and extended application 
of candidate-list strategy (Clarke & Wright, 1964), which 
has been applied in several other algorithms (Toth & Vigo, 
2003; Johnson & McGeoch, 1997). This innovative 
strategy considerably speeds up the search process and lead 
to high quality results.  
 
When customer i  in route k is moved, its reinsertion is 
forbidden for next θ iteration by keeping (i.k) attributes in 
Tabu list. Through an aspiration criterion, neighbor 
solutions with lower cost than the best found solution are 
permitted to be accepted even if their attributes are in the 
Tabu list. In generating neighbor solution hard constraints 
are also controlled. It has been shown by researchers 
(Taillard et al., 1997) that a dynamic Tabu list size tends to 
give better results than fixed one. The parameter θ which 
indicates the size of Tabu list is a randomly generated 
number between θmax and θmin. We set θmax to 10 and θmin to 
5 similar to other researchers [19, 45]. The algorithms stop 
after reaching either the time set by the user or maximum 
allowed iterations.   
 
Experiment results 
 
In order to evaluate the performance of CARS optimization 
engine, a comprehensive experiment is conducted on a set 
of standard problem available in the literature.  In this 
experiment we have used the Christofides, Mingozzi and 
Toth (CMT) 14 standard VRSP benchmark instances 
(Christofides, Mingozzi & Toth, 1979). These problems 
contain 50 to 199 cities in addition to depot. Problems 
marked as C type have capacity restriction and type D 
problems have route length constraint. Our intention was to 
demonstrate the capability of CARS' optimization engine 
on classical VRSP for which enormous research and 
experiments has been done. The performance of CARS is 
compared with several best known advanced heuristic 
algorithms, namely, Taburoute (Gendreau, Hertz & 
Laporte, 1994), Taillard TS (Taillard, 1993), Berger and 
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Barkaoui algorithm (2004), Granular TS (Toth & Vigo, 
2003) and Unified TS (Cordeau, 2001).  
 
Table 2 demonstrated the results of CARS in comparison 
with the selected algorithms. The reported results for 
CARS are the best found solutions over 5 runs. As this 
table shows, the average deviation of CARS results from 
the best known solutions is 0.55 percent. In three instances, 
CARS provides the best known solutions. This experiment 
shows that CARS can provide comparable results with 
sophisticated TS algorithm for classical VRSP.  Since 
CARS is designed for real complex problems, we believe 
that it can easily attain higher quality solutions than 
algorithms which are designed and tested for standard 
problems.  Most of available algorithms are quite specific 
and need special modification for more complex cases. 
 
The computation time of algorithms cannot be compared 
directly, since they have run on different machines. CARS 

average run time for CMT set is 0.5 minutes, which is also 
an outstanding performance. This experiments shows that 
CARS can provide high quality results comparing to the 
leading edge heuristic algorithms. Another important 
feature of CARS is simplicity. Although, most of 
algorithms have specific parameters to be adjusted by 
users, CARS has no optimization parameter.   
 
In order to demonstrate the performance of CARS in 
solving real problems, from recent practical applications, 
some actual results are provided here. The performance is 
compared to other methodologies which can handle 
comparable practical problems. Table 2 illustrates the 
results of improvements achieved by CARS for two 
companies in food industries. The number of trucks for 
each company is around 150 and 250. 
 

 
Table 2: Comparison of CARS' results for the selected algorithms on CMT benchmark instances 

 

No. Size Type 

Taburoute1 Taillard2 Berger & Barkaoui3 Granular TS  Unified TS5 CARS 

Best Known Solution 

Value Minutes6 Value Value Minutes7 Value Minutes8 Value Minutes9 Value Minutes10 

1 50 C 524.61 6.00 524.61 524.61 2.00 524.61 0.81 524.61 4.57 524.61 0.11 524.61 

2 75 C 835.77 53.80 835.26 835.26 14.33 838.6 2.21 835.45 7.27 839.61 0.31 835.26 

3 100 C 829.45 18.40 826.14 827.39 27.90 828.56 2.39 829.44 11.23 829.18 0.22 826.14 

4 150 C 1036.16 58.80 1028.42 1036.16 48.98 1033.21 4.51 1038.44 18.72 1033.21 0.45 1028.42 

5 199 C 1322.65 90.90 1298.79 1324.06 55.41 1318.25 7.50 1305.87 28.10 1298.79 0.70 1291.45 

6 50 C,D 555.43 13.50 555.43 555.43 2.33 555.43 0.86 555.43 4.61 555.43 0.20 555.43 

7 75 C,D 913.23 54.60 909.68 909.68 10.50 920.72 2.75 909.68 7.55 913.33 0.53 909.68 

8 100 C,D 865.94 25.60 865.94 868.32 5.05 869.48 2.90 866.38 11.17 869.48 0.30 865.94 

9 150 C,D 1177.76 71.00 1162.55 1169.15 17.88 1173.12 5.67 1171.81 19.17 1176.50 0.83 1162.55 

10 199 C,D 1418.51 99.80 1397.94 1418.79 43.86 1435.74 9.11 1415.4 29.74 1397.94 0.90 1395.85 

11 120 C 1073.47 22.20 1042.11 1043.11 22.43 1042.87 3.18 1074.13 14.15 1074.13 0.63 1042.11 

12 100 C 819.56 16.00 819.56 819.56 7.21 819.56 1.10 819.56 10.99 819.56 0.57 819.56 

13 120 C,D 1573.81 59.20 1541.14 1553.12 34.91 1545.51 9.34 1568.91 14.53 1545.98 0.77 1541.14 

14 100 C,D 866.37 65.70 866.37 866.37 4.73 866.37 1.41 866.53 10.65 868.50 0.53 866.37 

Percent Deviation from  the best known 0.86%   0.06% 0.48% 
 

0.69%   0.69%   0.55%   
 

1 Gendreau et al ., 1994 

2 Taillard (1993) (Time is not available) 
3 Berger & Barkaoui (2004) 

 Toth & Vigo (2003) 
5 Cordea et al., 2001 

6 Silicon Graphics workstation 5.7 MHz, (36 Mflops). 
7 Pentium 400 MHz PC 

8 Pentium 200 MHz PC 

9 Sun Ultrasparc  10 (440 MHz). 

10 Pentium 2 GHz PC 

 
 
To demonstrate the effectiveness of the system, a sample of 
ten consecutive days planning data is obtained from two 
companies who are willing to utilize CARS as their new 
logistics planning system. The results attained by CARS 
are compared with those of their current system in use. 
 
The first company was using an advanced planning and 
scheduling system. The second company was using an 
uncomplicated planning system with an optimization 

engine which can interact with planners and let them 
improve the results based on their knowledge.  
 
To evaluate the system performance, three measurement 
indices are considered.  Distance, which is a traditional 
index in the evaluation of VRSP, is the primary index. The 
most important index in practice is distribution cost. This 
cost is comprised of distribution mileage cost, fixed cost of 
utilized trucks and overtime cost. The customer service is 
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another important index in practice. This index is calculated 
by multiplying time window satisfaction and customer 
priority. 
 
Table 3 shows the percent of improvement in results of 
distribution, compared to previous systems, in two sample 
companies over ten days. The results indicate that CARS 
can substantially improve the effectiveness of distribution 
planning in both cases. Although it is not a solid statistical 
proof, it provides an initial indication of the value of our 
system in practice. 
 
The system in Company A, compared with Company B, 
can provide better results in distance and cost minimization 
in the expense of lower service level. Since in Company B 
the results are refined by experts, they can easily improve 
the customer service level. However, this increases distance 
and cost. Overall, it seems that the optimization engine of 
CARS provides much better compromise between different 
objectives and higher solution quality. 
 
 

Table 3:  Percent of Improvement in 
performance using CARS in sample 

companies 
 Company A Company B 

No Dista
nce 

Cost Custome
r Service 

Distanc
e 

Cost Custome
r Service 

1 4,3 6,4 12,6 8,2 12,2 2,3 
2 5,1 8,4 14,8 9,0 10,9 2,0 
3 8,4 9,2 15,5 13,8 16,3 0,5 
4 7,5 10,1 9,8 18,4 22,3 -2,0 
5 2,9 3,2 11,6 14,0 17,2 0,1 
6 6,1 7,0 10,1 12,7 14,1 2,0 
7 5,0 11,8 14,0 9,3 11,0 4,5 
8 7,9 8,5 8,3 7,1 10,7 5,4 
9 4,7 9,7 10,6 10,4 16,5 1,9 

10 5,4 6,3 19 11,9 15,2 1,3 
Average 5,73 8,06 12,63 11,48 14,64 1,8 

 
CARS features 
 
The complexity of VRSP requires a sophisticated planning 
and evaluation system. It is very difficult for a dispatcher to 
evaluate and possibly modify the results provided by the 
system, just by examining the sequence of events. The 
system should help him/her to consider the results from 
several dimensions. To meet this requirement, several 
viewing tool are embedded in CARS. Users can browse the 
final results in tabular, Gantt chart, tree and map formats.  
 
The tabular view presents the sequence of visits by 
vehicles, in a table along with detail and aggregate 
information of the result. This view provides the user with 
an overview of the plan in order to efficiently evaluate the 
distribution of load between trucks, operation time and 
capacity usage.  
 

The Gantt chart view maps the results based on time and 
load of trucks. This view shows the schedule of each truck, 
along with its utilized capacity in any stage of service. 
Travel time, load and unload times, rest and return periods 
are presented with different colours.  
 
The map view assists the user to follow geographical 
movement of vehicles, and to focus on a particular 
arrangement of routes and vehicles on the map. This view 
provides dispatchers with quick placement of vehicles on 
the map and helps them to modify the results according to 
their know-how. In practice, most of modifications and 
evaluations are performed on this view, in a convenient 
visual manner.  
 
In tree view, the solution is organized in a convenient tree 
format. Each branch, which represents a vehicle, can be 
expanded to exhibits trips, routes and stops. The important 
attributes of each object along with statistical charts, which 
provide visual comparative analysis of the selected 
attributes of the object, are shown in a linked window. This 
intuitive view enhances the efficiency of modification. In 
all of the above views, a modification can be performed by 
just using drag and drop. Figure 4 illustrates a snapshot of 
several views of CARS. 
 
By using the ‘cost components tool’, one may evaluate 
system performance, resource utilization and customer 
service level, which are measured by several indices. This 
tool can demonstrates the outcome of intended 
modifications and assist the user to find the best 
improvement alternative.  
 
Due to the nature of soft constraints in the system, cases 
may be encountered in which some of soft constraints are 
not satisfied. A soft constraint evaluation tool is 
incorporated in CARS to notify users of the status of soft 
constraints in the plan. In the initial setting of the system, 
depending on the degree of violation, several zones for 
each soft constraint may be set and a color can be assigned 
to each zone. In all of views, the violated soft constraints 
will be marked by appropriate color. This simple tool 
facilitates fast detection of critical cases in the plan.  
 
Since several aspects of an actual problem are not 
quantifiable, the user may need to override the solution 
provided by the system, in some cases. CARS provides the 
possibility to utilize the power of algorithm in modification 
procedure. For example, if the user wants to remove a stop 
from its position, the system immediately guides him to the 
best position where it might be inserted. The system can 
search for the best position, in the solution, in a trip or in a 
route. In the same way, the whole load of a truck can be 
transferred to the best available positions to take the truck 
out of service.  
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Figure 4: A snapshot of CARS views. 

 
 
 
Geographic Information System (GIS) is an essential part 
of the system, since the distribution network data is the 
basis for the schedule and cost calculations. It also 
facilitates the accurate address registration by marking the 
location of sites on the map. CARS calculates distance or 
travel time between locations in offline mode and saves it 
for future use. This data can be improved by using daily 
driver reports or using Geographic Positioning System 
(GPS) to track vehicles and record actual travel time. This 
feature enables the system to improve the accuracy of plan 
by lowering the discrepancy between planned and actual 
data. 
 
It is worthy to note that CARS has the potential to be used 
for Strategic Distribution Planning issues such as territory 
planning and location analysis. Similarly, the configuration 
of a supply chain may be analyzed by virtual generation of 
candidate site and based on actual data or assessment of 
distribution and site costs. 
 
Conclusion 
 
This paper described the modeling and design approach as 
well as main features of an advanced optimization system 
for various types of VRSP. CARS system can be used 
within an integrated supply chain planning system to 
optimize distribution operations. It can handle various 
logistics configurations and may be applied to any industry 
with minor customization. The system is uniquely 

developed to handle a large variety of objects and 
configurations in distribution planning problems. 
 
The main contribution of CARS is using advanced 
heuristics to tackle such a complex problem and practically 
improve the efficiency of distribution planning systems. It 
uses a specialized optimization engine whose underlying 
structure is based on the proposed classification. CARS is a 
flexible system able to solve VRSP with complex 
constraints by its powerful optimization algorithms. It 
provides the user with advanced functionalities for 
analyzing the results, modifying the problem instances and 
evaluating alternative solutions.  
 
CARS, as with most available algorithms, assumes that the 
travel times between locations are constant throughout the 
day. In the real-world, the travel times are time dependent 
and differ according to the traffic load. In the future 
research, parallel implementation of the algorithm is 
another development which is necessary to speedup the 
solution process. Further work should be aimed at 
enhancement of the algorithm to address the above issues. 
These developments will enable the system to match 
precise requirements of e-commerce fulfillment and home 
delivery problems.  
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